Novel Insertion, Rearrangement and Addition Products from Dihalogenocarbene Reactions with 5(10)-Unsaturated Steroids

John F. Templeton, ${ }^{*, a}$ Yangzhi Ling, ${ }^{a}$ Weiyang Lin, ${ }^{a}$ Randy J. Pitura, ${ }^{\boldsymbol{a}}$ Kirk Marat ${ }^{\boldsymbol{b}}$ and John N. Bridson ${ }^{c}$
${ }^{a}$ Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
${ }^{\text {b }}$ Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
${ }^{c}$ Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1C 5 S7

Abstract

Novel insertion, rearrangement and addition products from dibromocarbene and dichlorocarbene reactions with $5(10)$-unsaturated steroids have been identified. The dihalogenocarbenes were prepared under phase-transfer conditions $\left(\mathrm{CHBr}_{3}-\right.$ or $\left.\mathrm{CHCl}_{3}-\mathrm{NaOH}\right)$, and from $\mathrm{CHBr}_{3}-\mathrm{KOBu}^{t}-\mathrm{Et}_{2} \mathrm{O}$, phenyl(trichloromethyl)mercury and sodium trichloroacetate. Evidence that the major products arise from an initial dihalogenocarbene reaction on the α face of the molecule is reported. The major products obtained from addition of CBr_{2} to 3,17 -disubstituted estr-5(10)-enes, after ketal hydrolysis, were $19(S)$-bromo- $9 \alpha, 19$-cyclo-10 -androst-4-en-3-one and $3,^{\prime} 3^{\prime}, 19(S)$-tribromo-3'H-9 19 19-cyclocyclo-propa[5,6]-5, 10α-androstan-3-one derivatives together with the 19,19-dibromo- $5 \alpha, 19$-cyclo-10 steroid adduct. No products from addition of CBr_{2} to the β face of the double bond, as previously reported, were identified. Reactions of CCl_{2} gave, besides rearrangement products analogous to those obtained from CBr_{2}, a 5α-hydroxy- $9 \alpha, 19 \alpha$-cycloandrostane derivative, the $9 \alpha-\mathrm{CHCl}_{2}$ insertion derivative and both α - and β-face addition products to the double bond. Structures were established by homonuclear and heteronuclear correlation and nuclear Overhauser effect NMR measurements and X-ray crystallography.

The addition of dihalogenocarbenes to steroid double bonds has been studied extensively. ${ }^{1,2}$ Dibromocarbene addition to the $5(10)$-double bond was employed in an early synthesis of the androstane structure ${ }^{3}$ and with retrosteroids ${ }^{4,5}$ to introduce the angular 19-methyl group. This dibromocarbene adduct was required as an intermediate in the synthesis of potential steroid enzyme inhibitors. Various reagents have been utilised to prepare dihalogenocarbenes in such reactions. Difluorocarbene, prepared from thermolysis of $\mathrm{CF}_{2} \mathrm{ClCO}_{2} \mathrm{Na}$ in refluxing diglyme [$\left.\left(\mathrm{MeOCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}\right]$, has been reported to add to both the α - and the β-face of $3 \alpha, 17 \beta$-diacetoxyestr-5(10)-ene, with β face addition as the major product. ${ }^{2}$ Dibromocarbene, prepared from $\mathrm{CHBr}_{3}-\mathrm{KOBu}^{t}-\mathrm{Et}_{2} \mathrm{O}$, has been reported ${ }^{3 a}$ to give, on addition to 17,17-ethylenedioxy-3,3-dimethoxyestr-5(10)-ene followed by acid hydrolysis, 19,19-dibromo-5 5,19 -cycloandro-stane-3,17-dione (11% yield), which was converted via 5β,19-cycloandrostane-3,17-dione into androst-4-ene-3,17-dione. Dichlorocarbene insertion into steroid $\mathrm{C}-\mathrm{H}$ bonds has been reported to take place at $\mathrm{C}-6$ in the steroid 4 -en- 3 -one ${ }^{6}$ and at C -7 in the steroid 5-ene. ${ }^{7}$ Dichlorocarbene-insertion reactions ${ }^{8}$ are favoured in tertiary ${ }^{9}$ and allylic ${ }^{10}$ positions.

Results and Discussion

19-Hydroxyandrost-4-ene-3,17-dione was converted by modification of the method described by Ueberwasser et al., ${ }^{11}$ via estr-5(10)-ene-3,17-dione 1, into the ketal alcohol 2a, which yielded 17β-(tert-butyldimethylsiloxy)-3,3-dimethoxy-estr-5(10)-ene $\mathbf{2 b}$ (Scheme 1). Treatment of the 5(10)-ene $2 b$ with dibromocarbene, prepared from $\mathrm{CHBr}_{3}-\mathrm{NaOH}$ under phasetransfer catalysis (PTC) with cetyltrimethylammonium bromide (CTAB), gave multiple products but the expected addition product to the β face of the $5(10)$-double bond ${ }^{3 a}$ was not isolated. From this reaction the tribromo derivative $8 \mathbf{8}$ was obtained in 37% yield, which on hydrolysis with acetone and aq. $\mathbf{H C l}$ gave the corresponding ketone $\mathbf{8 b}$. Initial treatment of the crude product from the dibromocarbene reaction with acetone
and HCl , followed by chromatography, yielded the tribromo derivative 8a together with a lesser amount of the monobromo exo (S)-isomer 6 . When the reaction was carried out for a longer time the α-face dibromo adduct 5 was isolated in low yield also.

Scheme 1 shows the proposed intermediates 3,4 and 7 in the formation of compounds $\mathbf{6}, \mathbf{8 a}$ and $\mathbf{8 b}$. Rearrangement of the initially formed insertion product 3 to intermediate 4 led, after hydrolysis of the ketal, to compounds 6 and $\mathbf{8 b}$. Dibromocarbene insertion into the $9 \alpha \mathrm{C}-\mathrm{H}$ bond to give the $9 \alpha-$ CHBr_{2} derivative 3 (see the analogous $9 \alpha-\mathrm{CHCl}_{2}$ products 21 and 22 below) followed by loss of the $6 \beta-\mathrm{H}$, either as H^{+}or H^{+}, with concomitant introduction of the $\mathrm{C}-5$ double bond formed the $9 \alpha, 19$-cyclo- 10α-derivative 4 with the less sterically hindered endo \mathbf{H}. The intermediate 4 on acidic hydrolysis of the ketal to intermediate 7 followed by double-bond conjugation gave the monobromo derivative 6 (see also compounds 13 and 17). This reaction may be driven by relief of steric strain. This rearrangement is consistent with the observation that no incorporation of deuterium occurred when $\mathrm{CDCl}_{3}-\mathrm{NaOD}$ $\mathrm{D}_{2} \mathrm{O}$ was used with PTC (see below). A second addition of dibromocarbene to the less sterically hindered β face of the $5,6-$ double bond gave the tribromo derivative 8 a, which on acid hydrolysis yielded the tribromo ketone $\mathbf{8 b}$. Reduction of the tribromo ketone $\mathbf{8 b}$ with tributyltin hydride gave two isomeric products identified as the endo (R)-isomer $8 \mathbf{c}$ and the exo (S) isomer 8d. Formation of the 5,6- rather than the 4,5 -double bond, shown by formation of the 5,6-dibromocyclopropano derivative, is consistent with the greater stability of the 5,6double bond, e.g. preferential formation of the $\mathrm{C}-5$ unsaturated ketal from the steroid 4-en-3-one. ${ }^{12}$ A minor component from this reaction proved to be 19,19-dibromo-17 β-(tert-butyl-dimethylsiloxy)-5, 19 -cyclo-10 α-androstan-3-one 5. When the PTC reaction was carried out for 18 h , followed by acid hydrolysis of the ketal, compounds 6 and $\mathbf{8 b}$ were isolated; however, when the reaction was continued for 48 h compounds 5 and $8 b$ were obtained. The longer reaction time would allow the intermediate 4 to be more completely converted into

1
2a $R=H$
2b $\mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Bu}^{\ell}$
iii

4

8a $R=(\mathrm{OMe})_{2}, \mathrm{X}=\mathrm{Y}=\mathrm{Br}$
8b $R=O, X=Y=B r$
8c $R=O, X=H, Y=B r$
8d $\mathrm{R}=\mathrm{O}, \mathrm{X}=\mathrm{Br}, \mathrm{Y}=\mathrm{H}$

Scheme 1 Reagents: i, malonic acid- MeOH ; ii, NaBH_{4}; iii, $\mathrm{CHBr}_{3}-$ $\mathrm{NaOH}-\mathrm{CTAB}$; iv, PTSA-acetone-water; $\mathrm{v}, \mathrm{Bu}^{\prime} \mathrm{Me}_{2} \mathrm{SiCl}$-imidazoleDMF; vi, $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$
compound 8a, thus precluding formation of intermediate 7 to give enone 6 .

Selective C-3 ketalisation of the dione 1 by treatment with toluene- p-sulfonic acid (PTSA) and ethylene glycol in benzene at $50^{\circ} \mathrm{C}$ for 1 h gave the monoketal 9 . Similar treatment (reflux using a Dean-Stark apparatus for 2 h gave a mixture of monoketal 9 and diketal 12 (9:12, $1: 4$), readily separable by chromatography. When reflux was continued for 16 h a mixture of the diketal 12 and the $\mathrm{C}-5$ double-bond isomer, which proved difficult to separate, has been reported. ${ }^{13}$
17β-(tert-Butyldimethylsiloxy)-3,3-ethylenedioxyestr-5(10)ene 10 was prepared from the ketal 9 by reduction $\left(\mathrm{NaBH}_{4}\right)$ of the C-17 ketone followed by silylation (Scheme 2). Treatment of the ketal 10 with dibromocarbene prepared from $\mathrm{CHBr}_{3}-$ $\mathrm{KOBu}^{t}-\mathrm{Et}_{2} \mathrm{O}$ gave mainly the monobromo derivative 6 together with the unsaturated ketone 11 after hydrolysis of the ketal with aqueous acid; the latter formed directly from the starting material. Ketal 10 under phase-transfer conditions with $\mathrm{CHBr}_{3}-\mathrm{NaOH}-\mathrm{CTAB}$ gave the tribromo derivative $\mathbf{1 5}$ as the major product isolated and this is consistent with addition of a second molecule of dibromocarbene to the intermediate C-5 double bond which is favoured under the more reactive phasetransfer conditions. Similarly, treatment of the diketal 12 with dibromocarbene prepared from $\mathrm{CHBr}_{3}-\mathrm{KOBu}^{t}-\mathrm{Et}_{2} \mathrm{O}$ yielded, after acid hydrolysis, the monobromo derivative 13 (corresponding to the bromo derivative 6) and the conjugated ketone 14 (corresponding to the unsaturated ketone 11). The monobromo derivative 13 did not correspond to the expected 5β,19-cycloandrostane-3,17-dione previously reported by Birch et al. ${ }^{3 a}$
In a series of reactions with 178-(tert-butyldimethylsiloxy)-3,3-dimethoxyestr-5(10)-ene 2b and 17 17 -(tert-butyldimethyl-siloxy)-3,3-ethylenedioxyestr-5(10)-ene 10 the following products were identified after extensive chromatography (Scheme 3). Treatment of the ketal 10 with dichlorocarbene under PTC [$\mathrm{CHCl}_{3}-\mathrm{NaOH}$-benzyltriethylammonium chloride (BTEAC)] for 3 h at reflux, followed by acid hydrolysis of the ketal, gave fractions identified as the trichloro derivative 16a (corresponding to the tribromo derivative 8a), the monochloro derivative 17 (corresponding to the monobromo derivative 6) and the 19,19 -dichloro- $5 \beta, 19$-cycloandrostane 19. Another fraction was identified as the unsaturated ketone 11 which can be derived directly from the ketal 10 on acid hydrolysis of the ketal followed by conjugation of the double bond. Repetition of this reaction using CDCl_{3} and NaOD in $\mathrm{D}_{2} \mathrm{O}$ with the ketal 10 showed no evidence for the incorporation of deuterium into the major products, 16a and 17, in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra; the singlet proton at $\delta_{\mathrm{H}} 2.82$ and $3.38(19-\mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of the trichloro 16a and monochloro 17 derivatives, respectively, was still present. This result is consistent with the rearrangement proposed in Scheme 1. A similar reaction with the dimethoxy ketal $2 \mathbf{b}$, using BTEAC at $25^{\circ} \mathrm{C}$, yielded fractions identified as follows. (i) 17β-(tert-Butyldimethylsiloxy)-19(S)-chloro- $9 \alpha, 19$-cyclo- 10α-androst-4-en-3-one 17 (corresponding to the bromo derivative 6) and 17β-(tert-butyldimethylsiloxy)-$19(S)$-chloro- $5 \beta, 6 \beta$-dichloromethylene- $9 \alpha, 19$-cyclo- 10α-andro-stan-3-one 16b, the hydrolysis product from the dimethoxy ketal analogue of 16a. The C-3 ethylenedioxy ketal in the trichloro derivative 16a was resistant to PTSA-aq. acetone hydrolysis whereas similar treatment of the corresponding product from the dimethoxy ketal $\mathbf{2 b}$ gave the trichloro ketone 16b; (ii) the 19,19-dichloro- $5 \alpha, 19$-cyclo- 10α-androstane 20a, also isolated as the 17β-alcohol 20b, and 19,19-dichloro- $5 \beta, 19$-cycloandrostane 19; (iii) The $\mathrm{C}(9 \alpha)-\mathrm{H}$ insertion products, the unstable, noncrystalline, $9 \alpha-\mathrm{CHCl}_{2} 21$ and its conjugated isomer 22. Because dichlorocarbene-insertion reactions are favoured in tertiary and allylic positions, the axial $\mathrm{C}(9 \alpha)-\mathrm{H}$ bond is the most favourable position for dichlorocarbene insertion to occur; (iv) the $19(S)$ -

Scheme 2 Reagents: i, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}-\mathrm{PTSA} ;$ ii, NaBH_{4}; iii, $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{SiCl}$-imidazole-DMF; iv, $\mathrm{CHBr}_{3}-\mathrm{KOBu}^{t}-\mathrm{Et}_{2} \mathrm{O}$; v, $\mathrm{CHBr} \mathbf{r}_{3}-\mathrm{NaOH}-\mathrm{CTAB}$

Scheme 3 Reagents: i, $\mathrm{CHCl}_{3}-\mathrm{NaOH}-\mathrm{BTEAC}$; ii, PTSA-acetone- $\mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{PhHgCCl}_{3}$; iv, $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Na}$-diglyme
chloro- 5α-hydroxy- $9 \alpha, 19$-cyclo- 10α-androstane derivative 18, which may be formed by attack of water at C-5 and intramolecular rearrangement of the $9 \alpha-\mathrm{CHCl}_{2}$ derivative 21; (v) the unsaturated ketone 11 was also isolated.

From treatment of the ketal 10 with phenyl(trichloromethyl)mercury the trichloro derivative 16a and the hydrolysis product from the starting material 11 were separated. The major product from treatment of the ketal 10 with dichlorocarbene, obtained from pyrolysis of $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Na}$, was again the trichloro derivative 16a.
Tributyltin hydride reduction of the 19,19 -dichloro- 5β, 19cycloandrostane 19 gave two products identified as the monochloro $19(R)$-isomer 23a and the $19(S)$-isomer 23b (Scheme 4). Similarly, treatment of the 19,19-dichloro-5 α,19-cyclo-10 α-androstane 20a gave the monochloro $19(R)$-isomer 24b and the $19(S)$-isomer 24a.
Anke et al. ${ }^{14}$ reported that treatment of 9,10 -octalin 25 with $\mathrm{CHCl}_{3}-\mathrm{NaOH}-\mathrm{BTEAC}$ for 3 h under reflux gave the dichloromethylene adduct 26 a in 96% yield on vacuum distillation.

Scheme 4 Reagents: i, $\mathrm{Bu}_{3} \mathrm{SnH}$-benzene

From this reaction under the same conditions we obtained the adduct 26a in 51% yield together with the allylic dichloromethyl insertion product 27 a in 30% yield by flash chromatographic separation. The corresponding dibromo adducts $\mathbf{2 6 b}$ and 27 b in 23 and 22% yield, respectively, were obtained when 9,10 -octalin was treated with $\mathrm{CHBr}_{3}-\mathrm{NaOH}-\mathrm{CTAB}$ (Scheme 5). ${ }^{15}$ This

Scheme 5 Reagents: i, $\mathrm{CHX}_{3}-\mathrm{NaOH}-\mathrm{BTEAC}(\mathrm{Cl})$ or CTAB (Br)
result is consistent with the formation of the corresponding $9_{\alpha-}$ CHBr_{2} insertion product 3 as an intermediate in the formation of compounds 6 and 8 a .

Nuclear Magnetic Resonance Analyses.-Steroid structures were established by ${ }^{1} \mathrm{H}$ NMR (Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectral analysis. ${ }^{13} \mathrm{C}$ NMR assignments are based on published data, ${ }^{16}$ polarisation transfer ${ }^{17}$ and internal consistency. Homonuclear ${ }^{18}$ and heteronuclear ${ }^{19,20}$ correlation and nuclear Overhauser effect (NOE) ${ }^{21}$ measurements were performed as discussed below.
Homonuclear ${ }^{18}$ (COSY) and heteronuclear ${ }^{19}$ (HSQC) correlation spectra allowed a complete assignment of the carbon and proton spectra for compounds $6,8 \mathrm{~b}, 8 \mathrm{c}, \mathbf{8 d}, \mathbf{1 8}, 19$, 20a, 22, 23a, 23b, 24a and 24b. Because the cyclopropyl groups are located at quaternary sites, i.e. C-5, C-9 and C-10 and the dihalogeno carbons are quaternary themselves, the heteronuclear spectrum from the 2D heteronuclear multiple bond coherence (HMBC) experiment was critical in establishing the location of addition for products $8 \mathrm{~b}, 19$ and 20a and by analogy products 8a, 15, 16a, 16b, 18 and 20b.
For the monobromo derivative 6 the COSY spectrum showed long-range (4-bond) coupling between the cyclopropyl proton and the $1 \beta-\mathrm{H}$ and $11 \beta-\mathrm{H}$, consistent with the 9,10 location of the cyclopropyl group. These typical ' W ' configuration couplings also suggest that the cyclopropyl group is located on the α face. NOE measurements observed from the cyclopropyl proton to the $7 \alpha-\mathrm{H}(9.2 \%), 14-\mathrm{H}(3.2 \%), 2 \alpha-\mathrm{H}$ (0.5%) and $7 \beta-\mathrm{H}(-1.6 \%$, via a 3 -spin effect from the $7 \alpha-\mathrm{H})$ confirm that the cyclopropyl group is located on the α face. For compound $\mathbf{8 b}$ the lack of unsaturation and the presence of three bromines was indicative of the addition of a second dibromocarbene. The location of the 9,10 -cyclopropyl group was established by the presence of 4 -bond couplings between the cyclopropyl proton and the $1 \beta-\mathrm{H}$ and $11 \beta-\mathrm{H}$ as seen in the monobromo derivative 6. Furthermore these protons lacked the usual couplings to the $9 \alpha-\mathrm{H}$, and the expected cross-peaks were observed in the HMBC ${ }^{20}$ spectrum. NOEs were observed from the (S)-C-19 cyclopropyl proton to the $7 \alpha-\mathrm{H}(7.5 \%), 14-\mathrm{H}$ (3.8%) and the $4 \alpha-\mathrm{H}(4.8 \%)$ from which it was concluded that the cyclopropyl group is on the α side of the steroid with the hydrogen endo. While the HMBC^{20} spectrum confirmed the location of the 5,6 -cyclopropane ring the stereochemistry of addition could not be determined directly from the NMR data. However, the stereochemistry was established from the NOE data observed for compounds 8 c and 8 d . In compounds 8 c and 8d, NOEs were observed from the 9,10 -cyclopropyl proton to the $14-\mathrm{H}$ and $7 \alpha-\mathrm{H}$. This confirmed the location of the cyclopropyl group on the α face of the steroid, with the hydrogen endo and the bromine exo, i.e. the (S)-isomer. In compound 8d a strong NOE (12%) was observed from the 5,6cyclopropyl proton to the $8-\mathrm{H}$. Therefore, the $5,6-\mathrm{cyclopropyl}$
group is located on the β side of the molecule with the hydrogen endo and the bromine exo, i.e. the (S)-isomer. As further evidence for this conclusion, the coupling patterns clearly indicate that the $6-\mathrm{H}$ is equatorial (and thus α) and has a trans cyclopropyl coupling $(4.3 \mathrm{~Hz})$ to the 5,6 -cyclopropyl hydrogen. In compound 8 c the 5,6 -cyclopropyl proton has an NOE to the $4 \beta-\mathrm{H}$ and a cis cyclopropyl coupling (8.1 Hz) to the $6 \alpha-\mathrm{H}$, clearly indicating that the 5,6 -cyclopropyl group is β with the cyclopropyl proton exo, i.e. the (R)-isomer. The structure of the dimethoxy ketal 8a followed from that of compound 8b. The structure of compound 5 was determined by analogy with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the dichloro analogue 20a (see below).

The structure of compound $\mathbf{1 8}$ was assigned on the following evidence. The location $(9,10)$ of the cyclopropyl group was established by the observation, in the COSY spectrum, of a fourbond coupling between the cyclopropyl and 11β protons and from the 2- and 3-bond $\mathrm{C}-\mathrm{H}$ couplings observed in the HMBC experiment. A 5.6% NOE was observed from the cyclopropyl proton to $7 \alpha-\mathrm{H}$, confirming that the cyclopropane ring is on the α face of the steroid with the H endo. The HMBC experiment confirmed a quaternary C-5 substituent. Based on the unequal geminal H-H couplings observed at $\mathrm{C}-2(-18.5 \mathrm{~Hz})$ and $\mathrm{C}-4$ $(-15.1 \mathrm{~Hz})$, and from the NOEs observed from the $4 \beta-\mathrm{H}$ to the $1 \beta-\mathrm{H}$ and $6 \beta-\mathrm{H}$, the stereochemistry at C-5 is most likely α with ring A in a conformation in which the $1 \beta-H$ and $4 \beta-\mathrm{H}$ are both axial.

The location of the cyclopropyl group in compounds 19 and 20a was established with the HMBC experiment. While it was not possible to determine the α - or β-face stereochemistry of these compounds directly the stereochemistry was determined from the reduction products 23a, 23b, 24a and 24b. For compound 23a, NOEs were observed from the cyclopropyl proton to the $1 \beta-\mathrm{H}(2.3 \%), 2 \beta-\mathrm{H}(4.2 \%)$, and $4 \beta-\mathrm{H}(2.9 \%)$, establishing β-face addition with the cyclopropyl proton over ring A and $19(R)$ stereochemistry. Similarly, compound 23b showed a 7.3% NOE between the cyclopropyl proton and the $8 \beta-\mathrm{H}$, confirming that the cyclopropyl group is β with the cyclopropyl proton over ring B and the 19(S) configuration. In compound 24a a 2.1% NOE was observed from the cyclopropyl proton to the $4 \alpha-\mathrm{H}$ and a 4.2% NOE was observed to the $2 \alpha-\mathrm{H}$, confirming α-face addition and $19(S)$ stereochemistry at the cyclopropyl carbon. In compound 24b a large (9.7%) NOE was observed from the cyclopropyl proton to the $9 \alpha-\mathrm{H}$, and a smaller (3.5%) NOE was observed from the cyclopropyl proton to the $7 \alpha-\mathrm{H}$, again establishing addition of the carbene to the α side of the steroid and $19(R)$ stereochemistry at the cyclopropyl carbon.

Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 13 and 17 with those of compound 6 , compounds 15 and 16a with compound 8a, and compound 16b with compound 8b established their structures.

The structure of the insertion product 22 was determined by the following NMR data. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were consistent with the presence of the unsaturated 4 -en-3-one group, and a singlet at $\delta_{\mathrm{H}} 6.23$ and a methine carbon at $\delta_{\mathrm{C}} 76.59$ were in agreement with the CHCl_{2} group. The COSY spectrum showed long-range couplings assigned to coupling between the CHCl_{2} proton and the $10 \beta-$ and $11 \beta-\mathrm{H}$. Similarly, NOEs were assigned between the CHCl_{2} proton and the $14-\mathrm{H}(19 \%), 12 \alpha-\mathrm{H}$ $(4.2 \%), 7 \alpha(1.9 \%), 11 \alpha-\mathrm{H}(0.5 \%)$ and $17 \alpha-\mathrm{H}(-1.0 \%)$, the last probably via a three-spin effect from the $14-\mathrm{H}$. These data clearly established that the CHCl_{2} is attached to $\mathrm{C}-9$ with α stereochemistry. The C-10ß stereochemistry can be inferred from the axial coupling observed $(13.5 \mathrm{~Hz})$ between the $10 \beta-$ and $1 \alpha-\mathrm{H}$. The structure of the non-crystalline dichloro product 21 is in agreement with its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the previously reported

Table $1{ }^{1} \mathrm{H}$ NMR chemical shifts $(J$ in Hz$){ }^{a}$

Compd.	13-Me	17 α-H	SiMe_{2}	CMe_{3}	Others
$2 \mathbf{b}^{\text {b }}$	0.74	3.64 (dd, J 7.6, 8.4)	0.02, 0.03	0.88	3.17, 3.20 (s, $2 \times \mathrm{OMe}$)
5	0.73	3.58 (t, J 8.2)	0.00, 0.01	0.88	$\begin{aligned} & 2.70(\mathrm{~d}, J 16.4,4 \alpha-\mathrm{H}), 2.61(\mathrm{ddd}, J 1.7,6.0,14.8,1 \beta-\mathrm{H}), 2.46(\mathrm{~d}, \\ & J 16.4,4 \beta-\mathrm{H}) \end{aligned}$
$6^{\text {c }}$	0.83	3.66 (t, J 8.6)	0.019, 0.032	0.89	3.37 (s, 19-H), 2.66 (m, $2 \alpha-\mathrm{H}), 6.18$ (s, 4-H)
8 a	0.74	3.61 (t $J 8.5$)	0.01, 0.02	0.87	$\begin{aligned} & 3.25(\mathrm{~s}, 2 \times \mathrm{OMe}), 2.79(\mathrm{~s}, 19-\mathrm{H}), 1.83 \text { and } 2.21\left(\text { each d, } J_{\mathrm{AB}} 13.4,4-\right. \\ & \left.\mathrm{H}_{2}\right), 2.52(\mathrm{~m}, 2 \alpha-\mathrm{H}) \end{aligned}$
$8 \mathrm{~b}^{\text {c }}$	0.76	3.65 (dd, J 7.6, 8.9)	0.013, 0.023	0.88	2.93 (s, 19-H), 2.81 (d, J 15.4, 4 $\alpha-\mathrm{H}$), 2.57 (d, J 15.4, 4 β-H)
$8 \mathrm{c}^{\text {c }}$	0.78	3.65 (t, J 8.6)	0.02, 0.03	0.88	$\begin{aligned} & 3.15(\mathrm{~s}, 19-\mathrm{H}), 2.91(\mathrm{~d}, J 4.3,20-\mathrm{H}), 2.81(\mathrm{~d}, J 15.3,4 \alpha-\mathrm{H}) 2.56(\mathrm{~m}, \\ & 2 \alpha-\mathrm{H}), 2.48(\mathrm{~m}, 2 \beta-\mathrm{H}), 2.38(\mathrm{dd}, J 2.0,15.4,4 \beta-\mathrm{H}) \end{aligned}$
$8 d^{c}$	0.78	3.65 (dd, J 7.6, 8.7)	0.01, 0.02	0.88	3.06 (s, 19-H), 2.97 (d, J 8.1, 20-H), 2.92 (d, J 14.5, $4 \alpha-\mathrm{H}) 2.63$ (m, $2 \beta-\mathrm{H}), 2.54(\mathrm{~m}, 8 \beta-\mathrm{H}), 2.45(\mathrm{~m}, 2 \alpha-\mathrm{H}), 2.34(\mathrm{~m}, 1 \beta-\mathrm{H}), 1.62(\mathrm{~d}$, $J 14.5,4 \beta-\mathrm{H})$
10	0.71	3.59 (t, J8.0)	-0.02, 0.01	0.88	3.96 (m, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$)
11	0.87	3.73 (t, J 7.4)	0.06, 0.07	0.90	5.74 (s, 4-H)
13	1.00				5.88 (s, 4-H), 3.37 (s, 19-H)
15	0.75	3.62 (t, J8.5)	0.01, 0.02	0.87	4.10 (m, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.81 (s, 19-H), 2.60 (m, $2 \alpha-\mathrm{H}$)
16a	0.75	3.62 (t, J 7.4)	$0.00,-0.01$	0.87	4.00 (m, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.82 ($\left.\mathrm{s}, 19-\mathrm{H}\right), 2.35$ (m, $2 \alpha-\mathrm{H}$)
16b	0.77	3.53 (t, J8.0)	$-0.01,-0.02$	0.87	2.96 (s, 19-H), 2.80 and 2.48 (each d, $J_{\text {AB }} 15.4,4-\mathrm{H}_{2}$)
17	0.83	3.66 (t, J8.5)	0.02, 0.03	0.89	5.86 (s, 4-H), 3.38 (19-H)
$18{ }^{\text {c }}$	0.81	3.67 (t, J8.1)	0.02, 0.03	0.88	2.57 and 2.69 (each d, $J_{\text {AB }} 15.2,4-\mathrm{H}_{2}$), 3.55 (s, 19-H)
$19{ }^{\text {c }}$	0.74	3.56 (t, J 8.4)	0.00, 0.01	0.88	2.78 (d, $J 17.2,4 \beta-\mathrm{H}), 2.41$ (d, $J 17.3,4 \alpha-\mathrm{H})$
$20 a^{\text {c }}$	0.73	3.58 (t, J8.3)	0.00, 0.01	0.88	$\begin{aligned} & 2.70(\mathrm{~d}, J 16.4,4 \alpha-\mathrm{H}), 2.52(\mathrm{ddd}, J 2.0,5.7,14.5,1 \beta-\mathrm{H}), 2.37(\mathrm{~d}, \\ & J 16.3 .4 \beta-\mathrm{H}), 2.16(\mathrm{~m}, 2 \alpha-\mathrm{H}) \end{aligned}$
$\mathbf{2 0 b}{ }^{\text {c }}$	0.78	3.67 (t, J8.4)			$\begin{aligned} & 2.70(\mathrm{~d}, J 16.4,4 \alpha-\mathrm{H}), 2.52(\mathrm{ddd}, J 2.2,5.0,15.0,1 \beta-\mathrm{H}), 2.37(\mathrm{~d}, \\ & J 16.3,4 \beta-\mathrm{H}) \end{aligned}$
21	0.78	3.67 (t, J8.0)	0.00, 0.02	0.88	6.22 (s, $9 \alpha-\mathrm{CHCl}_{2}$), 2.76 and 2.88 (each d, $J_{\mathrm{AB}} J 20.9,4-\mathrm{H}_{2}$)
$22^{\text {c }}$	0.82	3.66 (t, J 8.60)	0.01, 0.02	0.88	6.23 (s, $9 \alpha-\mathrm{CHCl}_{2}$), 5.81 (s, 4-H)
$23 \mathrm{a}^{\text {c }}$	0.74	3.58 (t, J8.4)	0.00, 0.01	0.88	3.10 (s, 19-H), 2.57 (d, J 17.5, 4 β-H), 2.48 (d, J 17.6, 4 α-H)
23b ${ }^{\text {c }}$	0.74	3.56 (t, J8.4)	0.00, 0.01	0.88	3.26 (s, 19-H), 2.57 (d, J 16.7, 4 β-H), 2.26 (d, J 16.7, 4 α-H)
$24 \mathrm{a}^{\text {c }}$	0.74	3.58 (t, J 8.4)	$0.00,0.01$	0.88	3.19 (s, 19-H), 2.55 (d, J 17.6, 4 α-H), 2.44 (d, J 17.7, 4 β-H)
$\mathbf{2 4 b}{ }^{\text {c }}$	0.71	3.53 (t, J8.3)	0.00, 0.01	0.87	2.56 (d, J 16.1, 4 α-H), 2.25 (d, J 16.1, 4 β-H)

${ }^{a}$ For solution in CDCl_{3} (SiMe_{4} internal standard) unless otherwise indicated on a Bruker AM300 instrument. ${ }^{b}$ In $\mathrm{CD}_{3} \mathrm{OD}$. ${ }^{c}$ Determined by 2-D analysis on a Bruker AMX500 instrument.
dichloro $26 a^{14}$ and dibromo 26b ${ }^{15}$ adducts were consistent with their structures. The dibromo 27b and dichloro 27a insertion products showed the presence of doublets at $6.19(J 2.7 \mathrm{~Hz})$ and $6.16(J 2.8 \mathrm{~Hz})$, respectively, assigned to the CHX_{2} proton. The tetrasubstituted 9,10 -double bond was observed in the ${ }^{13} \mathrm{C}$ spectra together with signals at $\delta_{\mathrm{C}} 54.11$ and 76.93 assigned to the CHX_{2} carbon, respectively.

The structures of compounds 17 and 20a have been confirmed by X-ray crystallographic analysis.

Experimental

Reactions were monitored by TLC which was carried out in the following solvent systems on silica gel (Merck type 60 H): acetone-light petroleum $\left(35-60^{\circ} \mathrm{C}\right)(\mathrm{LP})$, diethyl ether-LP, ethyl acetate-LP; compounds were visualised by dipping the plates in 5% sulfuric acid-ethanol followed by heating at $120^{\circ} \mathrm{C}$. LP was used for compounds $26 \mathrm{a} / \mathrm{b}$ and $27 \mathrm{a} / \mathrm{b}$, which were visualised in I_{2} vapour. Flash chromatography was carried out on silica gel (Merck type 60 for column chromatography) unless otherwise stated. M.p.s were measured on a Kofler hot-stage apparatus and are uncorrected. Elemental analyses were performed by Mr. Baldeo, School of Pharmacy, University of London, England.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in Tables 1 and 2. For compounds 26a,b and 27a,b, J-values are in Hz. Survey spectra were obtained on a Bruker AM300 instrument while two-dimensional and NOE spectra were recorded on a Bruker AMX500 spectrometer. Samples were measured in $\sim 50 \mathrm{mmol}$ dm^{-3} solutions in CDCl_{3} in 5 mm sample tubes. The residual CHCl_{3} peak in the solvent ($\delta_{\mathrm{C}} 77.0, \delta_{\mathrm{H}} 7.26$) was used as the internal reference for both proton and carbon spectra. Sample temperature was controlled at 300 K for all spectra. Carbon
spectra were classified as to multiplicity with the DEPT technique. ${ }^{17}$
Homonuclear correlation (COSY) spectra, ${ }^{18}$ were recorded with an F_{1} time domain of 256 points. Zero-filling yielded a 1024 (real) by 1024 (real) matrix after transformation. A 45° mixing pulse was employed, and spectra were displayed and plotted in the magnitude mode.

Heteronuclear correlation spectra were recorded with the proton-detected single quantum coherence (HSQC) experiment, ${ }^{21}$ with an F_{2} time domain of 4096 points and an F_{1} time domain of 256 points. Zero-filling in F_{1} and F_{2} resulted in a 4096 (real) by 512 (real) matrix after transformation.

Proton-detected multiple-bond heteronuclear correlation (HMBC) spectra ${ }^{21}$ were recorded with a low-pass J filter to suppress correlations due to the one-bond couplings. The matrix dimensions were the same as for the HSQC spectra.

Difference NOE experiments were performed with a spectral width of $\sim 2500 \mathrm{~Hz}$ and a real frequency domain data size of 32 K points, resulting in a digital resolution of 0.08 Hz per point. Frequency-list cycling was employed to distribute long-term changes in homogeneity equally among all spectra. Multiplets were irradiated by stepping the decoupler frequency between each line of the multiplet at 200 ms intervals, ${ }^{21}$ and each multiplet was irradiated for a total of 5 s . The irradiating field strength (calculated from the 90° pulse length and expressed as $\gamma B_{2} / 2 \pi$) was $\sim 7 \mathrm{~Hz}$. At least 512 transients (32 transients per irradiation point with 16 loops through the frequency list) were acquired for each irradiation point in order to ensure adequate signal-to-noise ratio and cancellation of unenhanced peaks. A control spectrum was subtracted from each spectrum, and NOE-values were determined by careful integration of the resulting difference spectrum. Using these techniques, NOE enhancements of less than 1% could be easily observed.
Table $2{ }^{13} \mathrm{C}$ NMR chemical shifts ${ }^{a}$

Carbon	Compound											
	$\mathbf{2 b}^{\text {b-d }}$	$5{ }^{\text {b }}$	$6^{\text {b.e }}$	89 ${ }^{\text {b.c }}$	8b ${ }^{\text {b.e }}$	8c ${ }^{\text {b.e }}$	8d ${ }^{\text {b.e }}$	$10^{\text {b.c }}$	$11^{\text {b }}$	13	$15^{\text {b.c }}$	$16 a^{\text {b.c }}$
1	26.24	25.58	26.86	24.61	24.49	25.97	25.46	23.15	27.49	26.85	24.66	22.80
2	38.86	37.20	35.44	40.25	39.13	39.22	39.21	37.58	37.08	35.37	34.73	34.15
3	101.20	210.36	198.83	100.10	207.76	208.36	209.08	108.32	198.43	198.51	108.30	108.14
4	40.36	48.06	126.41	48.79	48.31	45.78	49.90	40.70	124.83	126.72	41.23	39.34
5	125.63	31.28^{9}	162.47	33.94	32.40	27.33	25.50	125.59	166.51	161.27	33.42	33.80
6	31.91	28.30	29.60	34.70	33.95	27.63	21.27	31.40	35.88	29.60	34.33	33.05
7	27.86	$25.92{ }^{\text {f }}$	21.03	22.04	21.94	22.17	21.87	26.62	31.58	21.19	21.98	21.48
8	40.54	35.48	36.50	29.78	30.08	32.24	31.85	38.93	41.21	36.00	29.81	30.18
9	47.78	41.82	33.61	33.45	33.96	32.06	33.17	46.52	50.09	33.34	31.54	31.84
10	130.76	31.37^{9}	29.71	30.75	29.51	29.15	28.44	129.58	43.10	29.88	30.31	29.73
11	26.24	$25.24{ }^{\text {f }}$	24.33	24.61	25.04	25.24	25.20	26.07	26.84	23.91	23.21	22.80
12	30.00	36.80	34.95	34.76	34.77	34.85	34.96	30.85	37.69	35.66	34.73	35.26
13	45.07	43.28	43.77	43.89	44.05	43.68	43.94	43.90	44.13	47.93	43.90	43.89
14	50.69	50.56	48.30	48.79	48.81	48.31	49.00	49.56	50.64	49.02	48.82	49.14
15	24.15	23.51	22.88	22.73	22.75	23.01	22.81	25.15	23.95	20.45	22.72	22.11
16	32.18	30.69	30.91	30.93	30.93	30.84	30.96	31.06	31.58	29.37	30.94	30.96
17	83.20	81.43	81.31	81.25	81.15	81.39	81.29	81.76	82.45	219.29	81.24	81.27
18	12.17	11.51	11.17	11.42	11.51	11.20	11.47	11.60	11.78	13.64	11.43	11.42
19		61.24	34.21	32.80	32.52	32.92	32.65			33.34	32.48	40.75
5				40.79	37.71	26.81	31.71				40.38	69.24
	$16{ }^{\text {b }}$	$17^{\text {b }}$	$18^{\text {b.e }}$	$19^{\text {b.e }}$	20a ${ }^{\text {b.e }}$	20b ${ }^{\text {e }}$	$21^{\text {b }}$	$22^{\text {b.e }}$	23a ${ }^{\text {b.e }}$	$23 b^{\text {b.e }}$	$24 a^{\text {b.e }}$	$24 b^{\text {b.e }}$
1	23.34	24.87		28.12	23.34	23.35	$29.64{ }^{\text {f }}$	24.17	28.75		23.53	20.57
2	39.47	35.36	37.15	35.98	37.10	37.10	38.89	38.21	36.06	36.02	36.22	37.51
3	207.83	198.86	210.88	210.30	210.56	210.49	211.20	198.74	210.79	212.62	210.32	212.77
4	46.23	126.33	54.18	46.95	45.62	45.66	45.14	125.00	48.15	45.09	46.27	43.73
5	34.33	162.66	71.03	30.85	30.94	30.89	$131.32^{\text {g }}$	166.31	22.48	$24.76{ }^{\text {f }}$	$22.42{ }^{\text {f }}$	26.27^{f}
6	32.90	29.69	38.52	29.90	$25.37{ }^{\text {f }}$	25.38	31.05	33.62	27.25	32.64	25.23	29.35
7	21.40	20.97	19.30	26.28	$26.73{ }^{\text {f }}$	26.72	20.52	22.94	26.51	26.50	25.44	25.39
8	30.34	36.50	37.39	35.98	36.08	36.09	$42.13{ }^{h}$	44.24	36.71	35.86	35.23	38.67
9	32.68	33.97	34.19	47.76	39.37	39.25	48.09	47.78	50.46	45.21	38.00	47.96
10	28.91	30.34	33.78	32.19	31.62	31.57	132.49^{9}	50.75	26.07	29.57^{f}	$24.98{ }^{f}$	$27.21{ }^{f}$
11	23.15	24.87	23.35	22.27	25.82	25.79	$30.43{ }^{\text {f }}$	34.87	22.97	24.55	24.56	26.38
12	35.26	35.92	35.44	37.67	36.88	36.52	33.29	33.40	37.69	36.98	37.00	37.14
13	44.01	43.78	43.91	44.55	43.24	42.89	44.04	43.78	44.34	44.00	43.31	43.29
14	49.07	48.39	48.60	50.38	50.53	50.89	43.30^{h}	43.56	47.62	49.35	50.36	49.95
15	22.80	22.37	22.84	23.09	23.48	23.33	23.51	23.67	23.29	23.19	23.66	23.29
16	30.93	30.91	30.99	30.92	30.71	30.35	31.05^{f}	30.84	30.95	30.86	30.76	30.80
17	81.17	81.30	81.33	81.43	81.47	81.53	81.32	81.26	81.61	81.56	81.58	81.54
18	11.48	11.17	11.32	11.90	11.49	11.25	11.50	11.56	11.75	11.62	11.36	11.45
19	40.88	43.18	42.00	77.93	79.04	78.95			48.48	48.82	46.39	52.82
5	67.65											
$9{ }^{\prime}$							78.47	76.59				

[^0]The mass spectrum of compound 27b was recorded on a VG7070 E instrument at 70 eV .
X-Ray crystallographic data collection was on a Rigaku AFC6S diffractometer with a graphite monochromator with 17 $\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71069 \AA)$ or 20a $\mathrm{Cu}-\mathrm{K} \alpha \quad(\lambda=1.54178 \AA)$ radiation. Crystallographic data are summarised in Table 3. Cell constants and an orientation matrix for data collection were obtained by least squares using the setting angles for 1725 or 20a 22 reflections in the 2θ ranges $178.85-33.33^{\circ}$ or 20a 46.67-49.57 ${ }^{\circ}$. Data collection used the $\omega-2 \theta$ scan technique. Omega scans of several intense reflections, made before data collection, had an average scan width at half-height of 170.48° or 20a 0.30° with a take off angle of 6°. Scans of $17(1.47+0.30$ $\left.\tan \omega^{\circ}\right)$ or $20 \mathrm{a}\left(0.89+0.30 \tan \theta^{\circ}\right)$ were made at a speed of 174° $\min ^{-1}$ or 20a $8^{\circ} \mathrm{min}^{-1}$ (in ω). The weak reflections $I<10.0 \sigma(I)$ were rescanned (maximum of 2 rescans), and the counts accumulated to assure good counting statistics. Stationary background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was $2: 1$. Three reference reflections, measured every 150 reflections, remained constant for 20a but declined by 1.6% for 17 and a linear decay correction was applied. Intensities were corrected for Lorentz and polarization effects; a correction for absorption was applied based on azimuthal scans of several reflections 17 or by application of the program DIFABS ${ }^{22}$ 20a. The structure was solved using direct methods. Full-matrix least-squares refinement with anisotropic factors given to all non-H atoms converged to 17 ($R=0.080, R_{\mathrm{w}}=0.059, S=$ 2.78) or 20a ($R=0.058, R_{\mathrm{w}}=0.065, S=2.93$). The weighting scheme was based on counting statistics. The maximum shift/error in the final cycle was 170.01 or 20a 0.00 . The largest peaks in the final difference map were 170.025 and -0.25 or 20a 0.23 and -0.23 e \AA^{-1}. Atomic scattering factors were from International Tables for X-ray crystallography; ${ }^{23}$ anomalous dispersion effects were included in $F .{ }^{23}$ All calculations were made with the TEXSAN crystallographic software package. ${ }^{24}$ Figs. 1 and 2 were prepared using PLUTO. ${ }^{25}$ The silyl group in 17 exhibits conformational disorder (details in supplementary material). Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.*

Estr-5(10)-ene-3,17-dione 1.-A solution of 19-hydroxyan-drost-4-ene-3,17-dione (10 g) in acetone $\left(150 \mathrm{~cm}^{3}\right)$ at $10^{\circ} \mathrm{C}$ was treated with Jones reagent $\left(30 \mathrm{~cm}^{3}\right)$ for 30 min at $10-15^{\circ} \mathrm{C}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(350 \mathrm{~cm}^{3}\right)$ was added, the organic layer was washed successively with water and 43% aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and the residue was stirred with saturated aq. $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ for 30 min . The aqueous layer was washed with EtOAc, the EtOAc was back-extracted with aq. $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and the combined water layers were acidified with $10 \% \mathrm{HCl}$ to give, on filtration, 3,17-dioxoandrost-4-en-19-oic acid (7.3 g), m.p. $145-147^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{11} 146{ }^{\circ} \mathrm{C}$).
A solution of the acid $(1.0 \mathrm{~g})$ in pyridine $\left(1 \mathrm{~cm}^{3}\right)$ was heated and stirred at $50^{\circ} \mathrm{C}$ for 1 h , poured into ice-water, and filtered to give the unsaturated dione $1(700 \mathrm{mg}), \mathrm{m} . \mathrm{p} .140-145^{\circ} \mathrm{C}$ (from benzene-LP) (lit., $\left.{ }^{11} 144-146^{\circ} \mathrm{C}\right)$.

3,3-Dimethoxyestr-5(10)-en-173-ol 2a.-The dione $1(6 \mathrm{~g})$ and malonic acid (3 g) were stirred in $\mathrm{MeOH}\left(90 \mathrm{~cm}^{3}\right)$ for 19 h , then the mixture was cooled in an ice-bath, adjusted to pH 8 (Universal indicator paper) with saturated aq. NaHCO_{3}, and the product was filtered off to give 3,3-dimethoxyestr-5(10)-en17 -one (5.1 g), m.p. $114-117^{\circ} \mathrm{C}$ (lit., ${ }^{11} 115-116^{\circ} \mathrm{C}$).

[^1]Table 3 Crystallographic data

Compound	17	20a
Formula	$\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{ClO}_{2} \mathrm{Si}$	$\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Si} \cdot 0.3 \mathrm{H}_{2} \mathrm{O}$
Formula wt.	435.12	477.54
T / K	299	299
Crystal system	monoclinic	hexagonal
Space group	$P 2_{1}$	$P 6$
Cell dimensions a / \AA	$12.680(2)^{a}$	26.465(3)
b / \AA	6.720(3)	--
c / \AA	15.272(2)	6.772(3)
$\beta 7^{\circ}$	93.63(1)	(3)
Z	2	6
Cell volume $/ \AA^{\mathbf{3}}$	1298.7(7)	4108(3)
$F(000)$	472	1543
$D_{c} / \mathrm{g} \mathrm{cm}^{-3}$	1.113	1.548
μ / mm^{-1}	2.07 (Mo-K α)	$27.34(\mathrm{Cu}-\mathrm{K} \alpha)$
Crystal dimensions/ mm	$0.35 \times 0.35 \times 0.08$	$0.4 \times 2 \times 0.1$
2θ max $/^{\circ}$	45	119.9
Independent		
reflections	1878	2246
Acceptance ($1 / \sigma \mid>$)	2.00	2.00
Observed reflections	949	1504

${ }^{a}$ Estimated standard deviations in parentheses refer to the last digit.

Fig. 1 PLUTO view of the major conformation of $9 \alpha, 19 \alpha-$ chlorocycloandrostane 17

Fig. 2 PLUTO view of the $5 \alpha, 19 \alpha$-dichlorocycloandrostane 20a

To a solution of the dimethoxy ketal (5.5 g) in MeOH (50 cm^{3}) was added $\mathrm{NaBH}_{4}(1.3 \mathrm{~g})$ and the mixture was stirred for 1 h . The reaction mixture was poured into ice-water and extracted with diethyl ether to give the 17 -alcohol $2 \mathrm{a}(5.2 \mathrm{~g}$), m.p. $90-95^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$), sufficiently pure for the next reaction, which on recrystallisation had m.p. $110-112^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ $112-113^{\circ} \mathrm{C}$).

19(S)-Bromo-17 -(tert-butyldimethylsiloxy)-5 $5,6 \beta$-dibromo-methylene-3,3-dimethoxy- $9 \alpha, 19$-cyclo- 10α-androst-5(10)-ene 8a.-To a mixture of imidazole (1.4 g) in dimethylformamide (DMF) ($40 \mathrm{~cm}^{3}$) were added the 17 -alcohol 2a (1.6 g) and $\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{SiCl}(1.5 \mathrm{~g})$ and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h , poured into water, and extracted with diethyl ether to give a residue which, on flash chromatography and elution with 5% diethyl ether-LP, yielded the non-crystalline dimethoxy ketal 2b (1.7 g).
To a solution of the dimethoxy ketal $\mathbf{2 b}(1.1 \mathrm{~g})$ in bromoform ($5 \mathrm{~cm}^{3}$) were added CTAB (200 mg) and 50% aq. $\mathrm{NaOH}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred vigorously at room temperature under Ar for 18 h . The reaction mixture was diluted with diethyl ether and washed with 3% aq. HCl to give a residue which, on flash chromatography and elution with $4 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$, yielded the tribromo derivative 8a (650 mg), m.p. $148-152^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, 48.5; H, 6.6; Br, 34.1. $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 48.2 ; \mathrm{H}, 6.5 ; \mathrm{Br}, 34.4 \%$).

19(S)-Bromo-17 3 -(tert-butyldimethylsiloxy)-5 $\beta, 6 \beta$-dibromo-methylene- $9 \alpha, 19$-cyclo-10 α-androstan-3-one $\mathbf{8 b}$.-The tribromo derivative $8 \mathbf{8 a}(300 \mathrm{mg})$ was dissolved in acetone $\left(10 \mathrm{~cm}^{3}\right)$ containing 3% aq. $\mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 30 min at room temperature. The solution was adjusted to pH 8 with saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give, on flash chromatography and elution with $5 \% \mathrm{EtOAc}-\mathrm{LP}$, the tribromo ketone $\mathbf{8 b}$ (200 mg), m.p. $217-218{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, $47.8 ; \mathbf{H}, 6.0 ; \mathrm{Br}, 36.5 . \mathrm{C}_{26} \mathrm{H}_{39} \mathrm{Br}_{3} \mathrm{O}_{2} \mathrm{Si}$ requires C , $47.9 ; \mathrm{H}, 6.0 ; \mathrm{Br}, 36.8 \%$).

19(S)-Bromo-17 β-(tert-butyldimethylsiloxy)-5 $3,6 \beta$-dibromo-methylene- $9 \alpha, 19$-cyclo-10 α-androstan-3-one 8b and 17β-(tert-Butyldimethylsiloxy)-19,19-dibromo-5,19-cyclo-10 α-androstan-3-one 5.-To a solution of the dimethoxy ketal 2b (see preparation of compound 8 a above) (1.45 g) in bromoform (5 cm^{3}) were added CTAB (300 mg) and 50% aq. $\mathrm{NaOH}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred vigorously under Ar for 48 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with 3% aq. HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$ to give a residue, which was passed through silica gel in $5 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ to remove bromoform. The steroidal fractions (1.13 g) were dissolved in acetone ($30 \mathrm{~cm}^{3}$), PTSA (150 mg) was added, and the mixture was stirred for 1 h , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed successively with aq. NaHCO_{3} and water to give a residue which, on flash chromatography and elution with 8% acetone-LP, gave the tribromo derivative $8 \mathrm{bb}(300 \mathrm{mg})$, m.p. $217-218^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) and the 19,19-dibromo adduct 5 (21 mg), m.p. $173-176^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 53.8; $\mathrm{H}, 7.0 ; \mathrm{Br}, 28.8 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 53.6 ; \mathrm{H}, 7.2$; $\mathrm{Br}, 28.5 \%$).

19(S)-Bromo-173-(tert-butyldimethylsiloxy)-5 $3,6 \beta$-dibromo-methylene- $9 \alpha, 19$-cyclo-10 α-androstan-3-one $\mathbf{8 b}$ and 19(S)-
Bromo-17ß-(tert-butyldimethylsiloxy)-9 α_{α} 19-cyclo-10 α-androst-4-en-3-one 6.-To a solution of the dimethoxy ketal 2 b (see preparation of compound 8a above) (1.1 g) in bromoform (5 cm^{3}) were added CTAB (200 mg) and 50% aq. $\mathrm{NaOH}\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred vigorously under Ar for 18 h . After extraction $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ the stirred residue was treated with 3% aq. $\mathrm{HCl}\left(3.5 \mathrm{~cm}^{3}\right)$ in acetone ($35 \mathrm{~cm}^{3}$) for 30 min , and the mixture was then adjusted to pH 8 with aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give, on flash chromatography and elution with 5% acetone-LP, the tribromo derivative $\mathbf{8 b}(215 \mathrm{mg})$, m.p. $210-$ $215^{\circ} \mathrm{C}$ and the bromo derivative $6(53 \mathrm{mg})$, m.p. $182-185^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 62.4; H, 8.1; $\mathrm{Br}, 16.35$. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{BrO}_{2} \mathrm{Si}$ requires $\mathrm{C}, 62.6 ; \mathrm{H}, 8.2 ; \mathrm{Br}, 16.7 \%$).

19(S)-Bromo-5 $5,6 \beta-[(\mathrm{R})$-bromomethylene $]-17 \beta$-(tert-butyl-dimethylsiloxy)-9 9,19 -cyclo-10 α-androstan-3-one 8c and 19(S)-

Bromo-5 $\beta-6 \beta-[(\mathrm{S})$-bromomethylene $]-17 \beta$-(tert-butyldimethylsil-oxy)-9 9,19 -cyclo-10 α-androstan-3-one 8d.-To a solution of the ketone 8b (250 mg) in dry $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ containing azoisobutyronitrile (AIBN) (2 mg) under Ar at $0^{\circ} \mathrm{C}$ was added slowly a solution of tributyltin hydride (150 mg) in $\mathrm{Et}_{2} \mathrm{O}$ (15 cm^{3}) and the mixture was stirred for 2 h , at which time reaction was complete by TLC. The residue obtained after evaporation of the solvent was flash chromatographed. Elution with 2% acetone-LP gave the (R)-isomer $8 \mathrm{c}(48 \mathrm{mg})$, m.p. $200-203^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$) (Found: $\mathrm{C}, 54.2 ; \mathbf{H}, 7.2 ; \mathrm{Br}, 28.1$. $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{2}$ Si requires C, $54.55 ; \mathrm{H}, 7.0 ; \mathrm{Br}, 27.9 \%$) and the (S)isomer 8 d (72 mg), m.p. $155-158{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$) (Found: C, 54.55; H, 7.1; Br, 27.8\%).

19(S)-Bromo-17ß-(tert-butyldimethylsiloxy)-9 $\alpha, 19$-cyclo-10 $\alpha-$ androst-4-en-3-one 6 and 17β-(tert-Butyldimethylsiloxy)estr-4-en-3-one 11.-To a stirred solution of the ketal 10 (see below) $(500 \mathrm{mg})$ and KOBu^{t} [prepared by dissolution of K metal $(0.5 \mathrm{~g})$ in dry $\mathrm{Bu}^{\mathrm{t} O H}$, evaporation of excess of alcohol at reduced pressure, and drying of the residue at $150^{\circ} \mathrm{C}$ for 1 h$]$ in dry $\mathrm{Et}_{2} \mathrm{O}$ $\left(15 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ was added a solution of $\mathrm{CHBr}_{3}\left(3.5 \mathrm{~cm}^{3}\right)$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ during 2 h and the mixture was stirred for a further 22 h , when it was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$; the extract was dried and evaporated, to give a residue, which was stirred in acetone ($30 \mathrm{~cm}^{3}$) containing PTSA (300 mg) for 2 h . Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was washed with aq. NaHCO_{3} to give the monobromo derivative $6\left(65 \mathrm{mg}\right.$), m.p. $182-185^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) and the unsaturated ketone $11(45 \mathrm{mg})$, m.p. $134-136{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$) (Found: C, $74.0 ; \mathbf{H}, 10.5$ $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 74.2 ; \mathrm{H}, 10.4 \%$).

3,3-Ethylenedioxyestr-5(10)-en-17-one 9 and 3,3,17,17-Bis-(ethylenedioxy)estr-5(10)-ene 12.-The dione 1 (3.0 g), PTSA $(125 \mathrm{mg})$ and ethylene glycol $\left(42 \mathrm{~cm}^{3}\right)$ were refluxed in benzene $\left(160 \mathrm{~cm}^{3}\right)$ in a Dean-Stark apparatus for 2 h . The organic layer was washed successively with aq, NaHCO_{3} and water to give, after flash chromatography and elution with 20% EtOAc-LP, the diketal $12(2.55 \mathrm{~g})$, m.p. $84-86^{\circ} \mathrm{C}$ (lit., ${ }^{13 a} 79-80^{\circ} \mathrm{C}$) and the monoketal 9 (586 mg), m.p. $122-125^{\circ} \mathrm{C}$ (lit., ${ }^{26} 130-131^{\circ} \mathrm{C}$).

173-(tert-Butyldimethylsiloxy)-3,3-ethylenedioxyestr-5(10)ene 10.-A solution of the dione $1(4 \mathrm{~g})$, PTSA monohydrate (200 mg) and ethylene glycol ($30 \mathrm{~cm}^{3}$) in benzene ($320 \mathrm{~cm}^{3}$) was heated at $50^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was washed successively with 6% aq. NaHCO_{3} and water to give a residue (9), which was dissolved in $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right.$) and $\mathrm{NaBH}_{4}(2 \mathrm{~g})$ was added slowly to the stirred solution for 1 h . The organic layer was separated and evaporated to give, after flash chromatography and elution with 20% EtOAc-LP, a residue (3.2 g), which was treated with imidazole (1.5 g), tertbutyldimethylsilyl chloride (3.0 g) and DMF $\left(150 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$ for 2 h . Water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the ketal $10(3.76 \mathrm{~g})$, m.p. $126-127^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$) (Found: C, 72.1; $\mathrm{H}, 10.4 . \mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}$ requires C, $72.2 ; \mathrm{H}, 10.25 \%$).

19(S)-Bromo-9 $9,19-c y c l o-10 \alpha$-androst-4-ene-3,17-dione 13 and Estr-4-ene-3,17-dione 14.-A mixture of the diketal 12 (1.0 g) and solid KOBu^{t} [prepared as described from K metal (1 g) above and sublimed] in dry $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was treated with $\mathrm{CHBr}_{3}\left(6.7 \mathrm{~cm}^{3}\right.$) followed by acetone ($50 \mathrm{~cm}^{3}$) containing PTSA (500 mg) as described for the preparation of compound 6 . Flash chromatography and elution with 40% EtOAc-LP gave dione 14 (213 mg), m.p. $170-172{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (lit., ${ }^{27}$ $171-173{ }^{\circ} \mathrm{C}$) and the monobromo androstane derivative 13 (161 mg), m.p. $239-240^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 62.6 ; H , 6.1; $\mathrm{Br}, 21.7 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 6.4 ; \mathrm{Br}, 22.0 \%$).

When the above dibromocarbene reaction was carried out on the diketal $12(468 \mathrm{mg})$ for 2 h as reported by Birch et al. ${ }^{3 a}$ the unsaturated ketone 14 (53 mg), m.p. $166-170^{\circ} \mathrm{C}$ and the monobromo derivative $13(28 \mathrm{mg})$, m.p. $235-240^{\circ} \mathrm{C}$ were obtained.

19(S)-Bromo-173-(tert-butyldimethylsiloxy)-5 $3,6 \beta$-dibromo-methylene-3,3-ethylenedioxy- $9 \alpha, 19$-cyclo-10 α-androstane 15.The ketal $10(200 \mathrm{mg})$ was stirred vigorously with CHBr_{3} (1 $\left.\mathrm{cm}^{3}\right), 50 \%$ aq. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ and CTAB (40 mg) and under Ar for 18 h and was then treated with PTSA in acetone as described for compound 8b to give the tribromo derivative $15(40 \mathrm{mg})$, m.p. $245-248^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, $46.8 ; \mathrm{H}, 6.2 ; \mathrm{Br}$, 33.25. $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{Br}_{3} \mathrm{O}_{3} \mathrm{Si} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 46.55 ; \mathrm{H}, 6.4 ; \mathrm{Br}$, 33.2%).

173-(tert-Butyldimethylsiloxy)-19(S)-chloro-5 $3,6 \beta$-dichloro-methylene-3,3-ethylenedioxy-9 9,19 -cyclo-10 α-androstane 16a.The ketal $10(100 \mathrm{mg})$ was heated in bis-(2-methoxyethyl) ether $\left(1 \mathrm{~cm}^{3}\right)$ to $120-130^{\circ} \mathrm{C}$, a mixture of $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Na}(2.5 \mathrm{~g})$ in bis-(2-methoxyethyl) ether ($15 \mathrm{~cm}^{3}$) was added over a period of 30 min and the temperature was maintained for a further $3 \mathrm{~h} .{ }^{28}$ The mixture was cooled and filtered and the solvent was evaporated off to give, after flash chromatography and elution with 1% acetone-LP, the trichloro derivative $16 \mathrm{a}(41 \mathrm{mg})$, m.p. $254-257^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-LP).

173-(tert-Butyldimethylsiloxy)estr-4-en-3-one 11, 173-(tert-Butyldimethylsiloxy)-19(S)-chloro-5 $3,6 \beta$-dichloromethylene-3,3-ethylenedioxy- $9 \alpha, 19$-cyclo-10 α-androstane 16a.-The ketal 10 $(150 \mathrm{mg})$ and phenyl(trichloromethyl)mercury (207 mg) [m.p. $106-109{ }^{\circ} \mathrm{C}$ (lit., ${ }^{29}, 110^{\circ} \mathrm{C}$) prepared as in ref. 29] in dry toluene $\left(10 \mathrm{~cm}^{3}\right.$) was refluxed under Ar for 3 h , when a second portion of reagent (140 mg) was added and reflux was continued for a further 14 h . The mixture was cooled and filtered, and the residue obtained from evaporation was triturated with MeOH to remove insoluble mercury compounds, and the $\mathrm{MeOH}-$ soluble portion was evaporated, treated with PTSA $(150 \mathrm{mg})$ in acetone ($15 \mathrm{~cm}^{3}$) and stirred at room temperature for 2 h . Work-up as described for compound 6 on flash chromatography and elution with $10 \% \mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$ gave the trichloro derivative 16a (17 mg), m.p. $250-254^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) and the unsaturated ketone $11(25 \mathrm{mg})$, m.p. $125-130^{\circ} \mathrm{C}$.
17β-(tert-Butyldimethylsiloxy)estr-4-en-3-one 11, 17 1 -(tert-Butyldimethylsiloxy)-19(S)-chloro-5 $5,6 \beta$-dichloromethylene-3,3-ethylenedioxy- $9 \alpha, 19$-cyclo-10 α-androstane 16a, 17 β-(tert-Butyl-dimethylsiloxy)-19(S)-chloro-9 9,19 -cyclo-10 α-androst-4-en-3one 17 and 17β-(tert-Butyldimethylsiloxy)-19,19-dichloro-5 $5,19-$ cyclo- 5β-androstan-3-one 19.-The ketal 10 (200 mg), 50% aq. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$, BTEAC (50 mg) and $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$ were refluxed under Ar for 3 h . The reaction mixture was poured into water and extracted with diethyl ether to give a residue, which was treated at room temperature with PTSA (120 mg) in acetone ($30 \mathrm{~cm}^{3}$) for 2 h , diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with aq. NaHCO_{3} to give a residue which, on flash chromatography and elution with 10% $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$. gave the trichloro derivative $\mathbf{1 6 a}(27 \mathrm{mg})$, m.p. $254-$ $257^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{LP}$) (Found: C, 59.6; H, 7.7; Cl, 18.9. $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 59.8 ; \mathrm{H}, 7.7 ; \mathrm{Cl}, 18.9 \%$); the $5 \beta, 19-$ cyclo derivative 19 (11 mg), m.p. $154-157^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-$ $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $63.9 ; \mathrm{H}, 8.6 ; \mathrm{Cl}, 15.0 . \mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{O}_{2}$ Si requires $\mathrm{C}, 63.7, \mathrm{H}, 8.55 ; \mathrm{Cl}, 15.0 \%$); unsaturated ketone $11(8 \mathrm{mg})$, m.p. $130-133^{\circ} \mathrm{C}$; and monochloro unsaturated ketone 17 (53 mg), m.p. ${ }^{161-163}{ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 66.4; H, 9.0. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{ClO}_{2} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 9.1 \%$).
When the above reaction was repeated with the ketal (200 mg) but with CDCl_{3} and NaOD in $\mathrm{D}_{2} \mathrm{O}$ [prepared by
dissolution of Na metal $(0.7 \mathrm{~g})$ in $\left.\mathrm{D}_{2} \mathrm{O}\left(2.5 \mathrm{~cm}^{3}\right)\right]$ the products, 16a (25 mg), m.p. $254-257^{\circ} \mathrm{C}$ and 17 (41 mg), m.p. $160-$ $163^{\circ} \mathrm{C}$ showed the same ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals obtained previously.

17 3 -(tert-Butyldimethylsiloxy)estr-4-en-3-one 11; 17 1 -(tert-Butyldimethylsiloxy)-19(S)-chloro-5 $\beta, 6 \beta$-dichloromethylene$9 \alpha, 19$-cyclo-10 α-androstan-3-one 16b, 17β-(tert-Butyldimethyl-siloxy)-19(S)-chloro-9 α-19-cyclo-10 α-androst-4-en-3-one 17, 17ß-(tert-Butyldimethylsiloxy)-19(S)-chloro-5 5 -hydroxy-9 ${ }_{\alpha}, 19-$ cyclo-10 α-androstan-3-one 18, 173-(tert-Butyldimethylsiloxy)-19,19-dichloro-5 β,19-cyclo-5 β-androstan-3-one 19, 17β-(tert-Butyldimethylsiloxy)- 20a and 17 β-Hydroxy-19,19-dichloro-5 5 , 19-cyclo-10 α-androstan-3-one 20b, 17ß-(tert-Butyldimethyl-siloxy)-9 9 -dichloromethylandrost-5(10)-en-3-one 21 and 4-en-3one 22.-A solution of the dimethoxy ketal $2 \mathbf{b}(200 \mathrm{mg})$ in $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$ was treated with 50% aq. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ and BTEAC (50 mg) under Ar and the mixture was stirred at room temperature for 16 h . Work-up and treatment with PTSA were as described in the previous procedure for the ketal 10 except that treatment with PTSA was for 30 min . Flash chromatographic separation and elution with 2% acetone-LP gave the dichloro adduct $20 \mathrm{a}(8 \mathrm{mg})$, m.p. $160-163^{\circ} \mathrm{C}$ (from acetoneMeOH) (Found: C, 63.9; H, 8.7; Cl, 14.9. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{Si}$ requires $\mathrm{C}, 63.7 ; \mathrm{H}, 8.55 ; \mathrm{Cl}, 15.0 \%$; the non-crystalline dichloromethyl derivative 21 (24 mg); the dichloro adduct 19 (25 mg), m.p. $157-160^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$); the trichloro
 (Found: C, 60.0; H, 7.7; $\mathrm{Cl}, 20.2 . \mathrm{C}_{26} \mathrm{H}_{39} \mathrm{Cl}_{3} \mathrm{O}_{2} \mathrm{Si}$ requires C , $60.3 ; \mathrm{H}, 7.6 ; \mathrm{Cl}, 20.5 \%$); the unsaturated ketone $11(24 \mathrm{mg}) \mathrm{m} . \mathrm{p}$. $125-130^{\circ} \mathrm{C}$; and the monochloro derivative $17(28 \mathrm{mg})$, m.p. $156-161^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$).
A larger-scale reaction with the dimethoxy ketal 2 b (1.2 g) gave, on elution with 5% acetone-LP, in addition to the above compounds, the dichloromethyl 4-en-3-one 22 (132 mg), m.p. $139-141^{\circ} \mathrm{C}$ (from acetone-LP) (Found: C, 63.9; H, 8.75; Cl, 14.95. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{O}_{2}$ Si requires $\mathrm{C}, 63.7 ; \mathrm{H}, 8.55 ; \mathrm{Cl}, 15.0 \%$); the 5-hydroxy derivative $18\left(20 \mathrm{mg}\right.$), m.p. $181-184^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$ LP) (Found: C, 65.8; $\mathrm{H}, 9.1 ; \mathrm{Cl}, 8.2 . \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{ClO}_{3} \mathrm{Si}$ requires C, $66.3 ; \mathrm{H}, 9.1 ; \mathrm{Cl}, 7.8 \%$); and the 17 -alcohol $20 \mathrm{~b}(100 \mathrm{mg})$, m.p. 203-205 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$) (Found: C, $63.8 ; \mathrm{H}, 7.5 ; \mathrm{Cl}$, 20.0. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 7.3 ; \mathrm{Cl}, 19.8 \%$) were isolated.

173-(tert-Butyldimethylsiloxy)-19(R)-chloro- 23a and 19(S)-chloro- $5 \beta, 19$-cyclo- 5β-androstan-3-one 23b.-To a solution of the dichloro adduct $19(53 \mathrm{mg})$ in dry benzene $\left(5 \mathrm{~cm}^{3}\right)$ containing AIBN (2 mg) under an inert atmosphere was added tributyltin hydride (49 mg) and the mixture was heated to reflux for 2 h . Evaporation of the solvent gave a residue, which was flash chromatographed and on elution with 4% EtOAc-LP yielded the (S)-isomer 23b (16 mg), m.p. $139-142{ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-$ acetone $)$ (Found: $\mathrm{C}, 68.4 ; \mathrm{H}, 9.45 ; \mathrm{Cl}, 8.4 . \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{ClO}_{2}{ }^{-}$ Si requires C, $68.7 ; \mathrm{H}, 9.45 ; \mathrm{Cl}, 8.1 \%$) and the (R)-isomer 23 a (12 mg), m.p. $105-109^{\circ} \mathrm{C}$ (from MeOH-acetone) (Found: C, 69.0 ; $\mathrm{H}, 9.5 ; \mathrm{Cl}, 8.0 \%$).

173-(tert-Butyldimethylsiloxy)-19(S)-chloro- 24a and 19(R)-chloro-5, 19 -cyclo-10 α-androstan-3-one 24b.-The dichloro adduct $\mathbf{2 0 a}(70 \mathrm{mg})$ was refluxed with tributyltin hydride (64 mg) in benzene ($5 \mathrm{~cm}^{3}$) containing AIBN (2 mg) under Ar for 2 h . Flash chromatography of the residue obtained on evaporation of the reaction mixture gave, on elution with 2% acetone-LP, the (R)-isomer $\mathbf{2 4 b}\left(15 \mathrm{mg}\right.$), m.p. $83-85^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-$ acetone) (Found: C, $68.9 ; \mathrm{H}, 9.7 ; \mathrm{Cl}, 8.3 \%$) and the (S)isomer 24a (11 mg), m.p. $126-129^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-$ acetone) (Found: C, 68.7; H, 9.4; Cl, 8.3\%).

11,11-Dichloro- 26a and 11,11-Dibromo-tricyclo-[4.4.1.0 ${ }^{1,6}$]undecane 26b and 1-Dichloromethyl- 27a and 1-Dibromomethyl-1,2,3,4,5,6,7,8-octahydronaphthalene 27b.-9,10-Octalin 25 (500 mg), chloroform ($2.5 \mathrm{~cm}^{3}$), CTAB (100 mg), and 50% aq. $\mathrm{NaOH}\left(2.5 \mathrm{~cm}^{3}\right)$ were stirred together under reflux for 3 h . After dilution with water and extraction with $\mathrm{Et}_{2} \mathrm{O}$ the residue obtained from the extract was flash chromatographed; elution with cyclohexane gave the dichloro derivative 26a (410 mg), m.p. $35-38{ }^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{14} 37-38{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$) $1.30(4 \mathrm{H}, \mathrm{m}), 1.45(4 \mathrm{H}, \mathrm{m}), 1.65(4 \mathrm{H}, \mathrm{m})$ and $1.80(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ $27.41(\mathrm{C}-1,-6), 78.88\left(\mathrm{CCl}_{2}\right), 20.65$ and 29.81; and the noncrystalline dichloromethyl derivative $27 \mathrm{a}(237 \mathrm{mg}), \delta_{\mathrm{H}}\left(\mathrm{CHCl}_{3}\right)$ 6.16 (d, J 2.8, CHCl_{2}) and $2.65(\mathrm{br} \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}} 134.28(\mathrm{C}-9)$, $125.38(\mathrm{C}-8), 76.93\left(\mathrm{CHCl}_{2}\right), 49.82(\mathrm{C}-1), 31.00,30.64,27.26$, 23.07, 22.89, 22.57 and 21.05

9,10 -Octalin $25(500 \mathrm{mg})$, bromoform ($2.5 \mathrm{~cm}^{3}$), CTAB (100 mg) and 50% aq. $\mathrm{NaOH}\left(2.5 \mathrm{~cm}^{3}\right)$ were stirred together at room temperature for 16 h and worked up as described above. TLC showed two components. Flash chromatographic separation gave, on elution with cyclohexane, the dibromo derivative 26b $\left(261 \mathrm{mg}\right.$), m.p. $42-45^{\circ} \mathrm{C}$ (from acetone-MeOH) (lit., ${ }^{30} 46-$ $\left.47^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.30(4 \mathrm{H}, \mathrm{m}), 1.50(4 \mathrm{H}, \mathrm{m})$ and $1.80(8 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 27.98(\mathrm{C}-1,-6), 61.86\left(\mathrm{CBr}_{2}\right), 20.43$ and 31.76 ; and the noncrystalline dibromomethyl derivative $\mathbf{2 7 b}(249 \mathrm{mg}), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $6.19\left(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{CHBr}_{2}\right)$ and $2.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}} 134.51$ (C-9), $126.39(\mathrm{C}-8), 54.11\left(\mathrm{CHBr}_{2}\right), 50.61$ (C-1), 31.09, 30.84, $27.10,25.65,23.08,22.55$ and $21.28 ; m / z 306,307$ and $308\left(\mathrm{M}^{+}\right)$, 225 and $227(\mathrm{M}-\mathrm{Br})^{+}, 149\left(\mathrm{M}+\mathrm{H}-\mathrm{Br}_{2}\right)^{+}$and $135(\mathrm{M}-$ $\left.\mathrm{CHBr}_{2}\right)^{+}$.

Acknowledgements

We thank the Medical Research Council of Canada and the Leslie Dan Family Foundation, Scarborough, Ontario, Canada, for financial support. The Bruker AM300 and AMX500 instruments were funded by the Natural Sciences and Engineering Research Council of Canada with additional financial support from the Manitoba Research Council (AM300), The University of Manitoba Research Board (AM300), The University of Manitoba (AMX500), The University of Winnipeg (AMX500), and Lakehead University.

2 J. Crabbe, Ind. Chim. Belg., 1969, 34, 15
3 (a) A. J. Birch, J. M. Brown and G. S. R. Subba Rao, J. Chem. Soc., 1964, 3309; (b) A. J. Birch, Steroids, 1992, 57, 363.
4 A. J. Birch and G. S. R. Subba Rao, J. Chem. Soc., 1965, 5139.
5 A. J. Birch and G. S. R. Subba Rao, J. Chem. Soc., C, 1967 2509.

6 T. D. J. D'Silva and H. J. Ringold, Tetrahedron Lett., 1965, 4487.

7 F. T. Bond and R. H. Cornelia, Chem. Commun., 1968, 1189.
8 E. V. Dehmlow, in Methoden der Organischen Chemie (HoubenWeyl), ed. M. Regitz, Georg Thieme, Stuttgart and New York, 1989, Band E19b, pp. 1568-1573.
9 E. V. Dehmlow, Tetrahedron, 1971, 27, 4071.
10 D. Seyferth, J. M. Burlitch, K. Yamamoto, S. S. Washburne and C. J. Attridge, J. Org. Chem., 1970, 35, 1989.

11 H. Ueberwasser, K. Heusler, J. Kalvoda, C. Meystre, P. Wieland, G. Anner and A. Wettstein, Helv. Chim. Acta, 1963, 34, 344

12 C. Djerassi, Steroid Reactions, Holden-Day, Inc., San Francisco, 1963, pp. 3-16.
13 (a) J. Hill, J. Iriarte, K. Schaffner and O. Jeger, Helv. Chim. Acta, 1966, 49, 292; (b) J. A. Zderic, D. C. Limon, H. J. Ringold and C. Djerassi, J. Am. Chem. Soc., 1959, 81, 3120.

14 L. Anke, D. Reinhard and P. Weyerstahl, Liebigs Ann. Chem., 1981, 591.

15 R. Vaidyanathaswany and D. Devaprabhakana, Chem. Ind. (London), 1968, 515.
16 J. W. Blunt and J. B. Stothers, Org. Magn. Reson., 1977, 9, 439.
17 D. M. Doddrell, D. P. Pegg and M. T. Bendall, J. Magn. Reson., 1982, 48, 323.
18 W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys., 1976, 64, 2229.

19 G. Bodenhausen and D. J. Ruben, Chem. Phys. Lett., 1980, 69, 185.
20 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
21 M. Kinns and J. K. M. Sanders, J. Magn. Reson., 1984, 56, 518.
22 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, $39,158$.
23 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1974, Tables 2.2A, 2.3.1.
24 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, 1985.
25 S. Motherwell and W. Clegg, PLUTO. Program for plotting molecular and crystal structures. University of Cambridge, England, 1978.

26 N. N. Saha, Steroids, 1963, 12, 735.
27 A. L. Wilds and N. A. Nelson, J. Am. Chem. Soc., 1953, 75, 5366.
28 W. M. Wagner, Proc. Chem. Soc. (London), 1959, 229.
29 T. J. Logan, Org. Synth., 1973, Coll. Vol. V, 969.
30 E. Vogel, W. Weidemann, H. D. Roth, J. Einer and H. Gunther, Liebigs Ann. Chem., 1972, 1.

References

1 R. A. Moss and D. J. Smudin, J. Org. Chem., 1976, 41, 611 and references therein.

Paper 4/00351I
Received 14th January 1994
Accepted 19th January 1994

[^0]: CMe e_{3}). ${ }^{c}$ The ketal signals occur in compound 2 b at $\delta_{\mathrm{C}} 48.06,48$. 15 ; in $\mathrm{CD}_{3} \mathrm{OD} .{ }^{e}$ Determined by 2-D analysis on a Bruker AMX 500 instrument. ${ }^{f-h}$ Numbers in columns are interchangeable.

[^1]: * For details of the deposition scheme, see 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1994, Issue.

